Reification and Reflection in C++:
An Operating Systems Perspective®

Peter W. Madany, Nayeem Islam,
Panos Kougiouris, and Roy H. Campbell
University of Illinois at Urbana-Champaign

Department of Computer Science
1304 W. Springfield Avenue,

Urbana, IL 61801

1 Introduction

In this paper we will examine the benefits of applying the concepts of reification and reflection[12] to C++[13]
in order to support the construction of an object-oriented operating system. We describe ways in which C++
programs can perform reflective computation and to what extent the language and the run-time environment
support this computation. To evaluate the benefits of reflection within C++, we report on the effect of
reflective facilities on the design of Choices[1, 10, 11], a framework we are constructing for object-oriented
operating systems. Our paper describes practical reflective computation in a real system and represents an
application in C++ of ideas discussed by Maes[8].

Reflective facilities can be built into the architecture of an object-oriented language as proposed by

Maes. Alternatively, researchers have proposed using a multi-level system architecture containing meta-

*This work was supported in part by NSF grant CISE-1-5-30035 and by NASA grant NAG 1-163.



objects[16, 15]. However, we adopt a more conservative approach in which we build selected reflective
facilities within C++, an existing programming language architecture, enhancing the run-time system, and
using preprocessors and programmer conventions. The resulting facilities simplified the implementation of
many Choices operating system functions.

In Section 2 we refer to other work on reflection and define the terms that we use in the later sections.
In Section 3 we present the language aspects on which the Choices object-oriented operating system reflects,
and we discuss the techniques and conventions that we used to enable this reflection. In Section 4 we conclude
by evaluating the effort needed to add reflective facilities to C++.

In the full paper we will elaborate on the discussions presented in this extended abstract, and provide

details of the reflective facilities that we have constructed and used.

2 Definitions

Reification and reflection are terms that Brian Smith[12] introduced in his PhD thesis concerning the struc-
turing and organizing of self-modifying procedures and functions. Pattie Maes[8] broadened the application
of these ideas and commented that “the concept of reflection fits more naturally in the spirit of the object-
oriented world.” Recently, other researchers have elaborated on reflection in object-oriented systems and
have presented examples of how an existing language can be modified to support reflective facilities.[3, 4, 14]

In the context of an object-oriented programming language, we define reflection! as the ability of an
executing system of programmed objects to make attributes like the invocation, interface, inheritance and
implementation of the objects to be themselves the subject of their own computation. Although we agree with
the definitions given by the authors mentioned above, we view reflection from a bias of building an operating
system that supports object-oriented programs. The steps involved in reflection consist of: reification of
an abstract object-oriented concept, reflective computation using the reified attribute as data, and reflective

update that modifies the objects through reflective computation.

1The Oxford English Dictionary[9] defines reflection as “the mode, operation, or faculty by which the mind has knowledge
of itself and its operations, or by which it deals with ideas received from sensation and perception.”



We define reification? as the representation of an attribute of an object-oriented program such as member
function dispatch, inheritance, and object structure as an object within that program. Such a reifying object
provides member functions that support reflective computation or reflective update.

In our C++ object-oriented environment, a reifying object is defined by a concrete reifying class. Instan-
tiation of such a class constitutes reification of the attribute. The concrete reifying class inherits properties
defined by a class hierarchy. In particular, it may inherit properties from an abstract reifying class that
defines an abstract attribute. The dispatch of a member function of the reifying object corresponds to re-
flective computation. If the reflective computation updates the reified data, this corresponds to reflective
update. The reifying object has a causal connection with its attribute[8]. The dispatch of a member function
performing a reflective update will modify the attribute. Similarly, a change of the attribute modifies the
reifying object.

The most important decisions to be made in a reflective system are what attributes of the system should
be considered reifiable. Common examples of reified attributes in a C++ object-oriented application include
object member names, object data members, object member functions, and the member function dispatch
mechanism. However, to avoid the dangers associated with self-modifying instructions, it is not prudent to
allow reification of instruction code. Depending on the application, however, several other attributes could
also be reified, for example the protection afforded the encapsulated data of an object. Further, a reified

attribute could be associated with an object or a class of objects.

3 Examples of Reflection

As part of the Choices project[1], we have developed an object-oriented operating system written in C++.

Reflection in Choices supports:
e Storage — concurrency and performance of memory allocation and deallocation.

e Existence — mechanisms for automating the deletion of objects.

2Reification [9] is “the mental conversion of a [person or] abstract concept into a thing.”



Persistence — mechanisms for persistent object activation and deactivation.

e Class — the relationship between an object and its class.

Inheritance — the relationship between classes in a class hierarchy.

Encapsulation — hardware-enforced encapsulation of instance data.

Inspection — human-readable representations of objects for tracing, debugging, and instrumentation.

In the following paragraphs we discuss the motivation for each category of reflective computation, the
attributes that are reified, the reifying abstract classes, the member functions that define the reflective
computation, and the concrete classes that implement these member functions. We also discuss how we use

C++, additional tools, and programmer conventions.

Storage The memory for C++ objects in Choices is allocated from heap storage. While Choices boots, few
operating system facilities are available. Therefore the initial heap manager uses a simple algorithm that
has few features and places few requirements on the operating system. As the boot progresses and both
virtual memory and process-switching facilities become available, the default heap manager is changed to
a multi-threaded allocator that provides an appropriate balance of space and time usage properties for a
multi-threaded kernel. The C++ language directly supports reflection on heap management by allowing the
programmer to overload the new and delete operators for both the entire system and for individual classes.

A reifiable heap manager has proved essential for building an operating system. In Choices an Allocator
object reifies the heap manager. The Allocator class is an abstract reifying class that defines allocate and
free functions, which are invoked by the C++ operators new and delete. The heap can be replaced in
a running system by calling the global SetNewAllocator function with the address of the new Allocator
object. Several concrete subclasses of Allocator implement reified heaps with various properties; examples

include SimpleAllocator and ConcurrentAllocator.



Existence Several object-oriented languages, including Smalltalk[6], implicitly delete objects when they
are no longer of use. In C++, however, objects must be deleted explicitly. This is justified because in all
but the most trivial object-oriented systems, it is impossible to determine at compile-time when an object
should be deleted, and C++ is designed to avoid the overhead of a built-in garbage collector. In Choices,
however, the dynamic use of objects in the system would impose a significant burden on the programmer
unless implicit deletion is supported. Both reference-counting or garbage collection techniques can support
implicit deletion; we have chosen to use reference-counting.

Reference-counting implies that an object should exist as long as there is at least one pointer to the
object. In Choices the number of pointers to an object is reified by the concrete reifying class ReferenceCount.
Class Object defines three member functions, reference, unreference and noRemainingReferences,® that
perform reflective computation by incrementing and decrementing an Object’s ReferenceCount and calling
its destructor when the ReferenceCount is decremented to zero.

The mere provision of reference-counting functions does not ensure that ReferenceCounts will accurately
reflect the state of the system, and even the slightest inaccuracy can corrupt a running system. Therefore, we
chose to reify not only the reference-count for each Object but also pointers to objects, using a reifying class
called ObjectStar. ObjectStars automatically call reference when assigned the address of an object, and
they automatically call unreference when the address they store is overwritten. By ensuring the accurate
usage of reference-counting functions, ObjectStars effectively implement the desired control over an object’s
existence.

Because pointers are statically-typed in C++, we use a shadow hierarchy of ObjectStars, which mirrors the
class hierarchy in Chotices. The shadow hierarchy allows usage of ObjectStar subclasses to be type-checked
at compile-time. C++ does not directly support implicit deletion of objects, therefore we developed a tool to
create the ObjectStar shadow hierarchy. We also had to agree on a programmer convention that ObjectStars

would be used instead of traditional C++ pointers.

3These functions are inherited by all subclasses of Object.



Persistence Most operating systems support the storage of persistent data on secondary memory devices,
usually this support takes the form of a file system. In some object-oriented systems including Choices, a
persistent object may be used to encapsulate persistent data. The persistent object simplifies storing and
retrieving persistent data by making those operations part of a programmer transparent object activation
and deactivation scheme. When no processes are accessing a persistent object, it is automatically stored on
secondary storage. When a process references a persistent object, it is automatically retrieved. A persistent
object has a global lifetime that is independent of the process that creates it. It persists as long as there is
at least one reference to it from another persistent object. Applications can dynamically identify a set of
“root” objects that are by definition persistent, regardless of whether any other object refers to them.

As with existence, either reference-counting or garbage collection can control persistence. Our first imple-
mentation of persistence uses reference-counting; the number of persistent references to a persistent object
is reified by the concrete reifying class LinkCount*. A PersistentObject has a LinkCount object and 1ink and
unlink member functions that perform reflective computation on that object. When the ReferenceCount of
a PersistentObject is decremented to zero, the PersistentObject is written to secondary storage. When the
LinkCount of a PersistentObject is decremented to zero, the PersistentObject is removed from secondary
storage. The PersistentObjectStar class and its subclasses define pointers to instances of PersistentObject
and its subclasses. PersistentObjectStars not only call reference and unreference functions when appro-
priate but also call 1ink and unlink functions of PersistentObjects.

If Choices used garbage collection to control persistent storage, then the structure of each subclass of
PersistentObject would need to be reified. A garbage collector would use the reified structure of Persistent-
Objects to follow references between PersistentObjects and to determine the PersistentObjects that are
reachable from the set of root objects, and it would delete unreachable objects. C++ supports neither
reference-counted nor garbage-collected persistent storage. As with controlling object existence, we de-

veloped a tool to create the PersistentObjectStar shadow hierarchy, and we had to rely on programmer

4We named the persistent reference-count “LinkCount” because of its similarity to the number of links in a UNIX file system.



conventions.

Class The presence of classes as objects at run-time can simplify software development, enable dynamic
extensions, and enhance debugging facilities.

Class is a concrete reifying class that reifies C++ classes as objects in Choices. Classes are similar to the
Dossiers described in [7], but extended to support dynamic code linking and portable debugging. At run-time,
every Object in the Choices system refers to a specific Class. These Objects have the reflective computation
functions isMemberOf and isKindOf to test whether they belong to particular classes or hierarchies. Class
objects are also inserted in the Choices NameServer, this allows user programs to access Classes dynamically
by name.

C++ does not directly support classes as objects, therefore we developed a tool to create the code that

instantiates Classes.

Inheritance Since Choices uses inheritance extensively, merely knowing whether an object belongs to a
class is insufficient to support dynamically extensible systems, the entire static class hierarchy and inheritance
relationships must represented at run-time. The concrete reifying class Class reifies the class hierarchy used
to build the Choices operating system.

In C++ the member functions of an object can be dynamically bound using the virtual function table.
However, constructors, which assign virtual function table pointers to objects, cannot be dynamically bound.
Therefore, the classes of objects must be fully defined at compile-time, and objects’ member functions must
also be fully defined at compile-time. This implies that, once a system has been compiled, the classes of its
objects and their member functions are fixed.

Choices is designed as a run-time extensible system. Constructors are reified as the constructor member
of class Class. This allows programs to specify objects as instances of abstract classes whose concrete subclass
implementations can be changed at run-time.

Classes representing concrete subclasses can be added to a running system, and if the code for a concrete

subclass is not present at run-time, Chotces uses an instance of the abstract reifying class Codeloader that



reifies the symbol table. A CodeLoader object locates the code in the file system, loads the code into
memory, resolves the undefined symbols in the loaded code, and installs loaded constructor and member
functions. The CodeLoader is similar to the dynamic addition of code described in [2]. The CodelLoader
maintains the causal connection between the reified hierarchy and the actual hierarchy by loading class
definitions dynamically. It provides the member functions resolveUndefinedSymbols, installSymbols,
relocateSymbols, to perform reflective computation. A concrete reifying subclass, COFFLoader, implements
the functionality of the abstract class.

We found that an entire shadow hierarchy of Classes was unnecessary, since Classes can refer to their
superclasses and subclasses. Again, C++ directly supports neither a dynamic class hierarchy at run-time nor

the addition of code at run-time, therefore we developed the Class and CodeLoader classes.

Encapsulation C++ provides data encapsulation facilities, including public, protected, and private member
data and functions. These protection facilities are not hardware-enforced and thus can be compromised at
run-time. Hardware-enforced encapsulation is essential to an operating system. This encapsulation can be
achieved using separate address spaces, virtual memory restrictions, and the supervisor state of processors.

Normally objects cannot invoke functions across such hardware protection boundaries. To overcome this
restriction, instances of the concrete reifying ObjectProxy class[10] reify run-time encapsulation of system
objects. An ObjectProxy represents an object that is encapsulated in a different hardware-protection region.
Invocations of ObjectProxy member functions lead to an invocation of the reflective computation member
function delegate that crosses the appropriate protection boundary and delegates the member function
invocation to the real system object. An ObjectProxy cannot be forged, therefore data encapsulation can

be guaranteed.

Inspection When inspecting objects for debugging and displaying objects for tracing, much more than the
object’s address is needed. Furthermore, different classes of objects will require different kinds of inspection.
The concrete reifying class Object reifies human readable information about an Object. This class defines

the reflective computation member functions writeName and inspect that display the Class, address, and an



optional symbolic name to identify an object when debugging the system. Subclasses of Object can redefine
the functions to provide additional helpful information. The setName member function of class Object allows
objects to change their symbolic name when necessary.

While one cannot consider the symbolic name of an object a reification of its identity, it is a reification
of how an object identifies itself to a user of the system. If the structure that C++ classes impose on objects

were reified,® that reified structure could be used to further enhance object display.

4 Conclusion

In the final paper we will give further details and more examples of how reflective facilities can help one build
an operating system in an object-oriented language like C++. Although C++ does not provide specific support
for reflection, facilities can be added by extending the C++ run-time system, developing C++ preprocessors,
and using programmer conventions.

Our approach has several disadvantages. While C++ is flexible and allows reflective facilities to be built,
the facilities are fragile and must be used carefully. For example, our preprocessors do not fully parse
and analyze a C++ program, and incorrect use of the reflective extensions may generate incorrect results
without a compile time warning. Programmers invariably break any conventions that are not enforced by a
compiler. Furthermore, extensions to the C++ run-time system in Choices may be difficult to replicate on
other operating systems.

While modifying C++ to include a reflective architecture might be a laudable but impractical goal, there
are smaller changes that could be made that would better support the expression of reflection. C++ could
provide run-time representations of: the class of an object, the structure of instances of a class, and the
superclasses and subclasses of a class. This would simplify and make more robust the reification of classes,
inspection, and inheritance. The C++ language could also support the overloading of pointer creation,

assignment, and deletion. This would obviate shadow hierarchies of pointers to various classes of objects.

5See [5] for a macro-preprocessor implementation of reified class structures.



We do not advocate modifying C++ to support the various reflective facilities discussed in this paper.
These features seem to require fundamental changes to the architecture of the language. However, language

designers that are basing their language designs upon the success of C++ should consider reflective facilities.

10



References

[1]

[3]

[7]

Roy H. Campbell, Gary M. Johnston, Peter W. Madany, and Vincent F. Russo. Principles of Object-
Oriented Operating System Design. Technical Report UIUCDCS-R-89-1510, University of Illinois at

Urbana-Champaign, April 1989.

Sean M. Dorward, Ravi Sethi, and Jonathan E. Shopiro. Adding New Code to a Running C++ Program.

In Proceedings of the USENIX C++ Conference, pages 279-292, San Francisco, California, April 1990.

Jacques Ferber. Computational Reflection in Class based Object Oriented Languages. In OOPSLA 89,

Conference Proceedings, pages 317-326. ACM, 1989.

Brian Foote and Ralph E. Johnson. Reflective Facilities in Smalltalk-80. In OOPSLA 89, Conference

Proceedings, pages 327-335. ACM, 1989.

Erich Gamma, André Weinand, and Rudolf Marty. Integration of a Programming Environment into
ET++: A Case Study. In Stephen Cook, editor, Proceedings of the 1989 FEuropean Conference on Object-

Oriented Programming, pages 283-298, Nottingham, UK, July 1989. Cambridge University Press.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation. Addison-

Wesley, Reading, Massachusetts, 1983.

John A. Interrante and Mark A. Linton. Run-time Access to Type Information in C++. In Proceedings

of the USENIX C++ Conference, pages 233-240, San Francisco, California, April 1990.

Pattie Maes. Concepts and Experiments in Computational Reflection. In OOPSLA 87, Conference

Proceedings, pages 147-155. ACM, 1987.

Oxford University Press. Ozford English Dictionary. Oxford University Press, Walton Street, Oxford,

UK, 1971.

Vincent F. Russo. An Object-Oriented Operating System. PhD thesis, University of Illinois at Urbana-

Champaign, October 1990.

11



[11]

[12]

[13]

[14]

[15]

[16]

Vincent F. Russo, Peter W. Madany, and Roy H. Campbell. C++ and Operating Systems Performance:
A Case Study. In Proceedings of the USENIX C++ Conference, pages 103—114, San Francisco, California,

April 1990.

Brian C. Smith. Reflection and Semantics in a Procedural Language. PhD thesis, Massachusetts Institute

of Technology, January 1982.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Massachusetts, 1986.

Takuo Watanabe and Akinori Yonesawa. Reflection in an Object-Oriented Concurrent Language. ABCL

An Object Oriented System, pages 45-70, 1990.

Yasuhiko Yokote, Fumino Teraoka, Atsushi Mitsuzawa, Nobuhisa Fujinami, and Mario Tokoro. The
muse object architecture: A new operating system structuring concept. Technical Report SCSL-TR-90-

012, Sony Computer Science Laboratory Inc., October 1990.

Yasuhiko Yokote, Fumino Teraoka, and Mario Tokoro. A Reflective Architecture for an Object-Oriented
Distributed Operating System. In Stephen Cook, editor, Proceedings of the 1989 European Conference
on Object-Oriented Programming, pages 89-108, Nottingham, UK, July 1989. Cambridge University

Press.

12



